
Clef Manual

Eric Blond

7th of November 2009

1 Introduction

I’ve been thinking for quite a long time on what an ideal computer language
should have. So it doesn’t come as a surprise that I learnt quite a few languages:
C, C++, C#, Java, OCaml, Haskell, Python, Prolog, SQL to name the most
popular1.

A previous exposure to Computer Algebra Systems led me to think that
being able to represent mathematics within the language was a must be. But
such a feature is hard to reach since it requires the language to have serious
introspective capabilities.

This manual is not a formal description of a language that’s meant to evolve
a lot. It can eventually not be backward compatible if I feel that a rough
restructuration is necessary for a better language. But don’t be afraid: if I went
as far as writing a manual for the very first version of this language, it means
that I reached some solid conclusions about its grammar and semantic.

2 Background

This language deals with relations in a mathematical sense. More formally, let’s
define the alphabet A as the set of all Unicode characters. Over that set, we
can define strings set A∗ =

⋃
k∈N Ak.

Now given an arity k, we can define the set of relations of arity k to be
Rk = (A∗)k. We can also talk about the set of all relations R =

⋃
k∈NRk.

Now everything we can do with Clef is:

• define relations, most likely in a recursive manner

• query relations, i.e. get all the tuples a particular relations contains

3 Tutorial

3.1 Overview

First we need to define a set of relations in a file. Let’s suppose we have a file
named database.txt in the current directory that looks like this:

1... it came as far as SKI combinators

1

less-than[one, two]
less-than[two, three]
less-than[three, four]

before[X, Y]
less-than[X, Y]

before[X, Y]
less-than[X, Z]
before[Z, Y]

You can then start to use the interpreter like this:

eric@samsung:~/Documents/Clef$ python -m clef.main database.txt
Clef v0.1 (build 2009-11-04) by Eric Blond
Loading database...
... loaded 3 declarations
>less-than[X, Y]
+---+-------+-------+
| # | X | Y |
+---+-------+-------+
| 1 | one | two |
| 2 | three | four |
| 3 | two | three |
+---+-------+-------+
> less-than[one, X]
+---+-----+
| # | X |
+---+-----+
| 1 | two |
+---+-----+
> before[one, X]
+---+-------+
| # | X |
+---+-------+
| 1 | four |
| 2 | three |
| 3 | two |
+---+-------+
> less-than[X, two]
+---+-----+
| # | X |
+---+-----+
| 1 | one |
+---+-----+
>
Bye!
eric@samsung:~/Documents/Clef$

You end a session by just typing Enter in an empty line.
You’ve probably guessed so far that:

2

• the database.txt contains a definition of relations less-than and before

• during the session, we made some queries involving the first relation, and
the result we got were tables

3.2 Database

Now let’s have a look at how we can set relations in the database file.
We can actually make relations between labels. At the moment, we don’t

support relations between arbitrary strings but only those between labels which
are similar to what we call identifiers in more classical languages.

We can define simple relations by just laying down all cases one by one,
as in the definitions of less-than. As an example, let’s see the first simple
declaration:

less-than[one, two]

This declaration mathematically means that (one, two) ∈ less-than2.
Note that you’re free to define relations with different arities and names.
You can also define complex relations that involves so called conditions, as

you can see in the definition of before: declarations like that begin with a
pattern, and are followed by conditions which are like patterns, but start with
spaces/tabulations. Again, let’s see as an example the last declaration of that
kind:

before[X, Y]
less-than[X, Z]
before[Z, Y]

One important thing to understand that declaration is that uppercased iden-
tifiers like X are not labels but variables that are related to each other within a
declaration (but variables of same name in two different declarations are com-
pletely independant).

So what this declaration means in terms of relations is ∀(x, y) ∈ (A∗)2(∃z ∈
A∗(x, z) ∈ less-than2 ∧ (z, y) ∈ before2)⇒ (x, y) ∈ before2.

Finally, please note that all relations are initially defined as ∅. So undefined
relations can perfectly be queried (try this in the interpreter).

3.3 Queries

Each query must be in a pattern-like form, like the one you can see in the sample
session:

> less-than[X, Y]
> less-than[one, X]
> less-than[X, two]

Each result is a table whose columns are associated to the variables of the
pattern. Note that each tuple is only showed once, and that they’re order in
the lexicographical order.

Finally, let me explain a tricky case we can see when we make a query that
involves no variables at all:

3

> before[one, two]
+---+
| # |
+---+
| 1 |
+---+
> before[one, one]
+---+
| # |
+---+

In the first case, there is a solution as (one, two) ∈ before2. So we see that
there is one solution there. On the other hand, (one, one) /∈ before2, therefore
the table doesn’t have even one row.

4

